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Hinchcliffe’s theorem

“When a title is in the form of a question,
the answer is always NO.”

see, however:
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Disclaimer

I’m not a member of the MINOS collaboration
I take the full blame for this talk.
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The MINOS experiment
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Image credit: MINOS collaboration, http://www-numi.fnal.gov/

Far detector:
5.4 kt magnetized iron
/ solid scintillator

Near detector:
Similar to the far
detector but smaller
Goal: Reduction of
systematic uncertainties

Beam:
νµ (ν̄µ) from decay in flight of π+ (π−)
Intrinsic backgrounds: wrong-sign νµ, νe
from π, K , µ decays



MINOS νµ, ν̄µ disappearance data

ν̄µ data
Image credit: MINOS collaboration, http://www-numi.fnal.gov/

This result first presented by P. Vahle at Neutrino 2010, see also arXiv:1104.0344

Two-flavor fits: P(νµ → νµ) = 1− sin2 2θ sin2 ∆m2L
4E

Separate fits for neutrinos and anti-neutrinos differ at 98% confidence
level.
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Explanation attempts

Low statistics?
ν̄µ sample is about 20 times smaller than νµ sample.
⇒ Effect might go away with more statistics
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Explanation attempts

Systematic effect?
I can only speculate . . .
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CPT violation?

Why not just CP violation?
νµ → νµ is a T -invariant process
By virtue of CPT , it must conserve CP.
Note: CP violation in interactions is a possibility—see later

Phenomenological parameterizations
Assume mixing matrices for ν and ν̄ to be completely independent and
perform global fit

Barenboim Lykken arXiv:0908.2993

Introduce Lorentz- and CPT -violating operators like Aµψ̄γ
µψ

(with Aµ a constant 4-vector)
Dighe Ray arXiv:0802.0121

A model of spontaneous CPT violation
Ghost condensation (〈∂0φ〉 6= 0) on a distant brane in 5D.
⇒ preferred frame
Right-handed neutrinos propagating in the bulk couple to ∂µφ and to νL.
After ghost-condensation, Lorentz-violating neutrino mass terms are
generated.

Mukohyama Park arXiv:1009.1251
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Effective CPT violation: Neutrino matter effects

In the Standard Model:

Leff ∼ −2
√

2GF
[
ēγµPLνe

][
ν̄eγµPLe

]
∼ −2

√
2GF

[
ēγµPLe

][
ν̄eγµPLνe

]
In ordinary matter〈

ēγ0e
〉

= ne 〈ē~γe〉 ∼
〈
~ve

〉
= 0〈

ēγ0γ5e
〉
∼

〈
~σe~pe/Ee

〉
= 0

〈
ē~γγ5e

〉
∼ 〈~σe〉 = 0

Potential felt by electron neutrinos in ordinary matter:

V =
√

2GF ne

Sign changes for νµ ↔ ν̄µ

⇒ Effective CPT violation due to CPT -asymmetric background matter

In the SM, these effects are far too small to explain MINOS νµ disappearance
data since they are suppressed by θ13, ∆m2

21/∆m2
31
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Non-standard matter effects

Consider a neutral current (NC) non-standard interaction (NSI) of the form

LNSI ∼ −2
√

2GF ε
f
αβ

[
f̄γµf

][
ν̄αγµPLνβ

]
f = e, µ, τ ,

leading to off-diagonal (flavor-violating) and/or non-universal matter potential.
In the flavor basis,

V =
√

2GF ne

1 + εee εeµ εeτ

ε∗eµ εµµ εµτ

ε∗eτ ε∗µτ εττ

 .

The oscillation probability is

P(να → νβ) =
∣∣〈νβ |e−iHt |να〉

∣∣2
, H =

1
2E

U

0
∆m2

21
∆m2

31

 U† + V .

For ν̄: U → U∗,V → −V
⇒ Effective CPT violation
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Non-standard matter effects in the µ–τ sector
∆m2

eff =
[
(∆m2

32 cos 2θ23 + (εττ − εµµ)A)2 + |∆m2
32 sin 2θ23 + 2εµτ A|2

]
sin2 2θeff = |∆m2

32 sin 2θ23 + 2εµτ A|2/∆m4
N ,

(with A = A = 2
√

2GF neE)
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JK Machado Parke arXiv:1009.0014
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Non-standard matter effects in the µ–τ sector (2)
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Similar analysis performed by
Mann Cherdack Musial Kafka

arXiv:1006.5720

Note: We included only
the low-energy part of the

MINOS spectrum.
As shown in 1103.4365

the high-E part is important
and makes the fit worse.

JK Machado Parke arXiv:1009.0014
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|ε| & 0.1 required (almost as strong as SM
weak interactions)
Consistent with constraints on εµτ from
CHARM (νµe → νe) and NuTeV (νµq → νq)

Consistent with constraints on εττ from ΓZ 0

inv

Disfavored by atmospheric neutrinos
(These are 2-flavor limits, may not be robust)
Model-dependent constraints: See later



A new long-range force?
Heeck Rodejohann arXiv:1007.2655

Davoudiasl Lee Marciano arXiv:1102.5352

A very light Lµ − Lτ or B − Le − 2Lτ gauge boson Z ′

(mZ ′ . 10−18 eV ∼ 1 a.u.−1)
Very weak couplings (α . 10−50)
Mixing with the SM Z

νµ, ντ feel potential generated by the Sun (contribution from the Earth is
∼ 3 times smaller)
Since the Sun contains no anti-matter, and since ν and ν̄ have opposite
Lµ − Lτ and B − Le − 2Lτ charges), this leads to effective CPT violation.
Phenomenologically equivalent to εµµ, εττ .
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A CP-violating charged current interaction?

Remeber: νµ → νµ is CP-invariant
But: π( source) →??? → µ( detector) does not have to be.
Two possibilities

I Modified νµ flux at far detector, but not at near detector.
ντ contamination in the NuMI beam?
⇒ Ruled out by NOMAD.

I A new interaction of the form

ντ + N → X + µ ,

e.g.

LNSI ⊃ −2
√

2GF εd
τµVud [ūγρd ] [µ̄γρPLντ ] + h.c.

If the new interaction is vector-like, it will not contribute to π → µντ , which
is constrained by NOMAD.
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A CP-violating charged current interaction? (2)
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A CP-violating charged current interaction? (3)
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|ε| & 0.1 required (almost as
strong as SM weak interactions)
Consistent with
model-independent constraint
from τ → µ+ hadrons

ντ

W

d

u

τ

u

µ

ǫd
τµ

(Model-independent = consider
only log-divergent part)
Hard to embed in a
renormalizable model
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Non-standard interactions from heavy new physics

Aim: Relate NSI operators to renormalizable model
SU(2) invariant operators for neutrino NSI are usually accompanied by
charged lepton NSI, which are heavily constrained.
(Exception: NC [ν̄τντ ][f̄ f ] couplings)

see e.g. Antusch Baumann Fernández-Martínez arXiv:0807.1003
Gavela Hernandez Ota Winter arXiv:0809.3451

One way out: Dimension 8 operators, e.g. [Ec
γγ

ρLα][L̄βγρEc δ]

I Requires new mediators
I Requires cancellation between couplings to avoid large dim-6 effects.
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Non-standard interactions from light new physics

Many constraints on NSI come from high-energy (& O(GeV)) processes.
On the other hand, assume new mediator(s) with very small masses m
and with extremely weak coupling g

Nelson Walsh arXiv:0711.1363; Engelhardt Nelson Walsh arXiv:1002.4452

I high-energy cross sections/rates suppressed by g4

I Coherent forward scattering (q2 = 0) only suppressed by
(g2 sin2 θw/e2)(M2

W /m2) compared to SM weak interactions
I . . . can be relatively large

Light new physics also motivated
by Dark Matter
(Sommerfeld enhancement)
. . . and can potentially explain
DAMA, CoGeNT, CRESST signals
Pospelov 1103.3261, Harnik JK Machado, in progress (ASK ME!)

figure from Bjorken Essig Schuster Toro arXiv:0906.0580
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A common explanation for MINOS and SBL results?

If SBL anomalies are due to sterile neutrinos . . .
I Any CPT-conserving oscillation phenomenon will affect νµ and ν̄µ

in MINOS in the same way

If SBL anomalies are due to some new type of neutrino interaction
I The only conceivable new interaction that explains MINOS

seems to be one involving ντ

I No ντ at short baseline→ need several new interactions
to explain everything

I Hard to reconcile with constraints from charged leptons

More exotic ideas
I Sterile neutrinos and new interactions
→ Many parameters, loss of predicitivity
→ One sterile neutrino probably still not sufficient
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Conclusions

MINOS sees interesting, but not yet conclusive,
discrepancy between neutrino and anti-neutrino oscillations
Explanation attempts

I Low statistics
I Systematic uncertainty?
I CPT violation (can be spontaneous)?
I Non-standard matter effects or new long-range force

. . . difficult to reconcile with atmospheric neutrinos
I Modified charged current interactions

. . . difficult for model-building

Possible sources of new physics in neutrino oscillations
I Only flavor-non-universal or flavor-violating effects detectable
I Heavy new physics: Small effects, usually easier to see in charged leptons
I Light new physics: Well motivated, and neutrino matter effects are an

interesting discovery channel

The MINOS anomaly and the short-baseline anomalies seem to be
independent effects so far
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The future

New experiments will hopefully confirm or refute the anomalies
A reanalysis of older experimental data is desirable:

I The considerable tension in the global fit indicates that
some results are probably wrong.

Theorists have to understand the origin of the anomalies if they persist
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Thank you!



Verification of our simulation
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Non-standard matter effects in the µ–τ sector

Two-flavor calculation leads to

P(νµ → νµ) = 1− sin2 2θN sin2
(

∆m2
NL

4E

)
with

∆m2
N =

[
(∆m2

32 cos 2θ23 + εττ A)2

+ |∆m2
32 sin 2θ23 + 2εµτ A|2

]
sin2 2θN = |∆m2

32 sin 2θ23 + 2εµτ A|2/∆m4
N ,

and A = A = 2
√

2GF neE . (we set εµµ = 0
since flavor-universal terms can be
subtracted from V )
Note the following symmetries:

arg(εµτ ) → 2πn − arg(εµτ )

εµτ → −εµτ , εττ → −εττ , ∆m2
32 → −∆m2

32 ,

εττ → −εττ , θ23 →
π

2
− θ23 .
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Non-standard charged current interactions

“Apparent” oscillation probability:

P̃(νµ → νµ) =

1−
[
1 + 2 |εdτµ| cot 2θ23 cos

[
arg(εdτµ)

]
− |εdτµ|2

]
sin2 2θ23 sin2

(
∆m2

32L
4E

)
+ 2 |εdτµ| sin 2θ23 sin

[
arg(εdτµ)

]
sin

(
∆m2

32L
4E

)
cos

(
∆m2

32L
4E

)
For anti-neutrinos:

arg(εdτµ) → −arg(εdτµ)

Symmetries:

arg(εdτµ) → 2πn − arg(εdτµ) , ∆m2
32 → −∆m2

32

arg(εdτµ) → (2n + 1)π − arg(εdτµ) , θ23 →
π

2
− θ23

(The second of these can be generalized to a
continuous symmetry.)
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A similar analysis of NSI in the µ–τ sector

]2 eV
3

 [ x 102Δm

1 1.5 2 2.5 3 3.5 4

|
μ
τ

ε
N

S
I 

A
m

p
li
tu

d
e

 |

0

0.1

0.2

0.3

0.4

0.5

0.6

) Data (preliminary)νμ+ νμNSI Fit to MINOS (

))θ(22 as Best FIt (sin2Δm vs μτε

 

68% CL

90% CL

99% CL

Comb_Delt_Chi_Sq

MINOS νμ

MINOS νμ

Assume only εµτ 6= 0
Fit to extracted oscillation
probability rather than spectrum.
Results agree with ours
qualitatively, but not
quantitatively.
Possible reason: Fit to probability
cannot fully include effect of
experimental energy resolution

Neutrino Energy [GeV]
0 10 15 20 30 50

R
a

ti
o

 (
E

v
e

n
ts

/N
u

ll
 O

s
c
il

la
ti

o
n

s
)

0

0.5

1

1.5

 Data (preliminary)νμMINOS 

2 eV
-3

 = 2.35x102Δm

) = 1.0θ(22sin
 = 0.0μτε

5

(a)

NSI Best Fit (νμ+νμ)

Neutrino Energy [GeV]
0 10 20

R
a
ti

o
 (

E
v

e
n

ts
/N

u
ll
 O

s
c

il
la

ti
o

n
s

)

0

0.5

1

1.5

 Data (preliminary)νμMINOS 

2 eV
-3

 = 3.36x10
2

Δm

) = 0.86θ(22sin
 = 0.0μτε

)νμ+ νμNSI Best Fit (

5 30 50

(b)

Mann Cherdack Musial Kafka arXiv:1006.5720

Joachim Kopp Interpretations of recent MINOS results 31


	The MINOS experiments and (some of) its results
	Explanation attempts
	Low statistics?
	A systematic error?
	``Real'' CPT violation?
	Effective CPT violation: Neutrino matter effects?
	A CP-violating charged current interaction?
	Non-standard neutrino interactions in renormalizable models

	A common explanation for MINOS and SBL results?
	Conclusions
	Backup slides

